1,841 research outputs found

    Black hole information, unitarity, and nonlocality

    Get PDF
    The black hole information paradox apparently indicates the need for a fundamentally new ingredient in physics. The leading contender is nonlocality. Possible mechanisms for the nonlocality needed to restore unitarity to black hole evolution are investigated. Suggestions that such dynamics arises from ultra-planckian modes in Hawking's derivation are investigated and found not to be relevant, in a picture using smooth slices spanning the exterior and interior of the horizon. However, no simultaneous description of modes that have fallen into the black hole and outgoing Hawking modes can be given without appearance of a large kinematic invariant, or other dependence on ultra-planckian physics; a reliable argument for information loss thus has not been constructed. This suggests that strong gravitational dynamics is important. Such dynamics has been argued to be fundamentally nonlocal in extreme situations, such as those required to investigate the fate of information.Comment: 34 pages, 4 figures. Major revision of hep-th/0604047. v2: minor corrections and added referenc

    Locality in quantum gravity and string theory

    Full text link
    Breakdown of local physics in string theory at distances longer than the string scale is investigated. Such nonlocality would be expected to be visible in ultrahigh-energy scattering. The results of various approaches to such scattering are collected and examined. No evidence is found for non-locality from strings whose length grows linearly with the energy. However, local quantum field theory does apparently fail at scales determined by gravitational physics, particularly strong gravitational dynamics. This amplifies locality bound arguments that such failure of locality is a fundamental aspect of physics. This kind of nonlocality could be a central element of a possible loophole in the argument for information loss in black holes.Comment: 26 pages, 3 figures, harvmac. v2: minor changes to bring into accord with revised paper hep-th/060519

    High energy QCD scattering, the shape of gravity on an IR brane, and the Froissart bound

    Get PDF
    High-energy scattering in non-conformal gauge theories is investigated using the AdS/CFT dual string/gravity theory. It is argued that strong-gravity processes, such as black hole formation, play an important role in the dual dynamics. Further information about this dynamics is found by performing a linearized analysis of gravity for a mass near an infrared brane; this gives the far field approximation to black hole or other strong-gravity effects, and in particular allows us to estimate their shape. From this shape, one can infer a total scattering cross-section that grows with center of mass energy as ln^2 E, saturating the Froissart bound.Comment: 27 pages, 1 fig, harvmac. v2: references added, typos corrected v3: typo correcte

    Nonlocality vs. complementarity: a conservative approach to the information problem

    Full text link
    A proposal for resolution of the information paradox is that "nice slice" states, which have been viewed as providing a sharp argument for information loss, do not in fact do so as they do not give a fully accurate description of the quantum state of a black hole. This however leaves an information *problem*, which is to provide a consistent description of how information escapes when a black hole evaporates. While a rather extreme form of nonlocality has been advocated in the form of complementarity, this paper argues that is not necessary, and more modest nonlocality could solve the information problem. One possible distinguishing characteristic of scenarios is the information retention time. The question of whether such nonlocality implies acausality, and particularly inconsistency, is briefly addressed. The need for such nonlocality, and its apparent tension with our empirical observations of local quantum field theory, may be a critical missing piece in understanding the principles of quantum gravity.Comment: 11 pages of text and figures, + references. v2 minor text. v3 small revisions to match final journal versio

    Linearized Gravity in Brane Backgrounds

    Full text link
    A treatment of linearized gravity is given in the Randall-Sundrum background. The graviton propagator is found in terms of the scalar propagator, for which an explicit integral expression is provided. This reduces to the four-dimensional propagator at long distances along the brane, and provides estimates of subleading corrections. Asymptotics of the propagator off the brane yields exponential falloff of gravitational fields due to matter on the brane. This implies that black holes bound to the brane have a "pancake"-like shape in the extra dimension, and indicates validity of a perturbative treatment off the brane. Some connections with the AdS/CFT correspondence are described.Comment: 31 pages, harvmac. v2: minor typo and reference corrections. v3: minor corrections to eqs and discussio

    Gauge/String-Gravity Duality and Froissart Bound

    Full text link
    The gauge/string-gravity duality correspondence opened renewed hope and possibility to address some of the fundamental and non-perturbative QCD problems in particle physics, such as hadron spectrum and Regge behavior of the scattering amplitude at high energies. One of the most fundamental and long-standing problem is the high energy behavior of total cross-sections. According to a series of exhaustive tests by the COMPETE group, (1). total cross-sections have a universal Heisenberg behavior in energy corresponding to the maximal energy behavior allowed by the Froissart bound, i.e., A+Bln2(s/s0)A + B ln^2 (s/s_0) with B∼0.32mbB \sim 0.32 mb and s0∼34.41GeV2s_0 \sim 34.41 GeV^2 for all reactions, and (2). the factorization relation among σpp,even,σγp,andσγγ\sigma_{pp, even}, \sigma_{\gamma p}, and \sigma_{\gamma \gamma} is well satisfied by experiments. I discuss the recent interesting application of the gauge/string-gravity duality of AdS/CFTAdS/CFT correspondence with a deformed background metric so as to break the conformal symmetry that can lead to the Heisenberg behavior of rising total cross-sections, and present some preliminary results on the high energy QCD from Planckian scattering in AdSAdS and black-hole production.Comment: 10 pages, Presented to the Coral Gables Conference 2003, Launching of BelleE\'poque in High Energy Physics and Cosmology, 17 - 21 December 2003, Fort Lauderdale, Florid

    Precursors, black holes, and a locality bound

    Full text link
    We revisit the problem of precursors in the AdS/CFT correspondence. Identification of the precursors is expected to improve our understanding of the tension between holography and bulk locality and of the resolution of the black hole information paradox. Previous arguments that the precursors are large, undecorated Wilson loops are found to be flawed. We argue that the role of precursors should become evident when one saturates a certain locality bound. The spacetime uncertainty principle is a direct consequence of this bound.Comment: 26 pages, 8 figs; reference added, minor clarification in sec. 2; incorrect draft mistakenly used in version

    Bulk shape of brane-world black holes

    Full text link
    We propose a method to extend into the bulk asymptotically flat static spherically symmetric brane-world metrics. We employ the multipole (1/r) expansion in order to allow exact integration of the relevant equations along the (fifth) extra coordinate and make contact with the parameterized post-Newtonian formalism. We apply our method to three families of solutions previously appeared as candidates of black holes in the brane world and show that the shape of the horizon is very likely a flat ``pancake'' for astrophysical sources.Comment: 10 pages, MPLA style, 5 figures, accepted for publication in MPL
    • …
    corecore